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The X-ray scattering amplitude of a crystal containing isolated imperfections is expressed in terms of 
the Fourier transform of the atomic displacement vectors. The amplitude contains only the local proper- 
ties of the imperfections which are 'seen' by the incident beam of a finite size. Disruption of the Borr- 
mann transmitted (or diffracted) beam, narrowing of the dynamical diffraction range and 'diffuse' 
scattering caused by dynamically diffracted X-rays are some of the results obtained from the calculated 
amplitude. Black, white and black-white images in topographs are explained by the present theory. 
Image contrast is also discussed in terms of the thickness of the crystal. 

1. Introduction 

Recent interest in X-ray diffraction from a single 
crystal has been centred on the fine structure in a 
Laue spot. This fine structure is closely related to im- 
perfections in crystals. The techniques of X-ray topog- 
raphy 'magnify' at high resolution a Laue spot from a 
large portion of a crystal. 

In the X-ray topographs obtained from an imperfect 
crystal, one observes black and white images super- 
imposed on a background. For a thin crystal where 
the product of the linear absorption coefficient p and 
the thickness L is less than 1, defects may appear as 
black (stronger intensity) images accompanied by a 
faint anomalous transmission (or diffraction) beam 
trace. For intermediate thickness where 1 <pL< 10, 
the topographs show primarily white images. Black 

images also appear as well as black-white contrast 
images. Usually one should expect complicated pat- 
terns for these cases. For a thick crystal (/ tL> 10), the 
Borrmann (anomalous transmission) effect (Borrmann, 
1941, 1950) becomes dominant and is accompanied by 
white images of good contrast. Black images or non- 
uniform intensity distribution may still be observed in 
the topographs. The above qualitative description of 
images is based on casual observation of topographs. 
More complicated patterns including interference ef- 
fects, etc. are also observed. 

The primary objective of this paper is to present 
some of the explanations for the formation of the 
images mentioned above, by use of a previously for- 
mulated general theory of scattering from an imperfect 
crystal (Kuriyama, 1967a, 1968b). This theory has been 
derived with a large degree of rigor. Wherever approx- 
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imations were introduced, the probable loss in accuracy 
has been estimated mathematically. Physically speak- 
ing these approximations are very good. To employ 
the theory simply, however, it is convenient to relax 
the rigor in mathematics, especially for the description 
of atomic displacements. 

Since the characteristics of atomic displacements 
vary, depending on the type of imperfection, it is very 
difficult to obtain the explicit form of the X-ray scat- 
tering amplitude generally valid for a crystal so that 
one could make unequivocal deductions on any given 
imperfections. One can, however, calculate the scat- 
tering amplitude for various defects, case by case, if 
the atomic displacements are given so that the geo- 
metrical structure factor can be calculated numerically. 
In this way one may be able to obtain the accurate 
scattering amplitude for each type of defect (provided 
that the atomic displacements can always be given) 
since the theoretical formulation of the scattering am- 
plitude is quite accurate. However, in the process of 
numerical calculations there exists real danger that one 
tends to lose sight of the general features of the scat- 
tering processes. Since our interest is a basic under- 
standing of the diffraction processes in an imperfect 
crystal, it is best to preserve the generality of the resul- 
tant scattering amplitude regardless of the type of 
defect. The basic diffraction processes will be discussed 
separately from the effect due to the atomic displace- 
ments which mostly appears as a geometrical factor. 
At the expense of mathematical rigor, we shall intro- 
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Fig. 1. Beam geometry for Laue transmission. The incident 
beam defines the initial photon state Ik, v, R; in > and the 
scattered beam defines the final photon state Ik', v', R'; 
out >. When k ' = k + K  with K=O and H, the final state 
gives the photons scattered in the transmitted (K=O) and 
the Bragg diffracted (K= H) directions with respect to the 
perfect reference crystal. Generally, k' is arbitrary. 

duce some physical assumptions for describing the 
physical characteristics of imperfections. 

Since we are interested in topographic images, the 
scattering amplitude by an incident beam of finite size 
will be studied. Imperfection effects on the diffracted 
beams are here treated as caused solely by the state 
of the crystal, not by the state of the incident beam. 
Therefore, we shall here minimize the effect due to the 
intrinsic momentum (wave number) dispersion in the 
incident beam. 

It must be admitted that in any practical experiment 
a finite dispersion is inescapable. For instance, if the 
slit size is reduced below about 10 -s m, properties 
inherent in wave optics introduce significant dispersion, 
which cannot be neglected in dynamical diffraction. 
Nevertheless the basic premise of the theory in neglect- 
ing intrinsic dispersion is held to be valid, even if better 
radiation sources - such as X-ray lasers - are not yet 
available. 

2. General expression of the scattering amplitude 

In this paper we shall deal with an imperfect crystal 
plate, on which an X-ray beam of finite lateral size is 
incident, nearly satisfying a single Bragg reflection 
condition. The incident X-ray beam having lateral 
widths a and b, characterized by momentum k, energy 
k--Ikl = 2zr/2 (with h = c =  1) and polarization direction 
v, impinges at R on a crystal surface with the incident 
angle ~0. We call this crystal surface the entrance sur- 
face. The incident position R merely denotes the center 
position of the incident beam. 

Since a single Bragg reflection condition is assumed 
for the momentum k of the incident X-rays, there can 
be found only one reciprocal lattice vector H such that 
the Bragg condition [k[ = [k+H[ is approximately sat- 
isfied. Reciprocal lattice vectors are defined in the per- 
fect reference crystal and denoted in general by K. The 
perfect reference crystal is an imaginary crystal which 
is obtained by putting all atoms of a given type at 
ideally periodical lattice sites. 

Any scattered beam, being also finite in its lateral 
directions, emerges from another crystal surface at R' 
with the angle ~0~ measured from the normal of the 
surface, having momentum k', energy k' and polariza- 
tion direction v'. This surface may be called the exit 
surface. This beam geometry implies the Laue geometry 
as shown in Fig. 1. When one of the scattered beams 
emerges from the entrance surface the Bragg geometry 
is achieved. In this paper we consider the Laue geom- 
etry explicitly. 

To obtain the expression for the scattering amplitude 
we introduce the x and y axes on the X-ray entrance 
surface which is of infinite extent, and the z axis in the 
direction of the crystal thickness L. The exit surface 
is given by z = L .  We also describe a projection of a 
vector onto the crystal surface by a subscript t. 

The incident X-ray beam gives a photon in the initial 
state described by [k, v,R; in > ,  and the scattered beam 
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corresponds to a photon in a final state [k', v', R';  out >.  
When the crystal is perfect, the possible final states are 
given by k ' =  k +  K with K = 0 and H. The direction of 
the k' is called the transmitted direction when K = 0 ,  
and is called the Bragg diffracted direction when K = H. 
When the crystal is imperfect, the X-rays are diffracted 
not only in those directions, but irt all directions. In 
other words, it is possible to have any value for k' 
specifying the final state. In reality, however, the X-rays 
of an observable intensity are usually scattered from 
a crystal in an angular range around those two direc- 
tions (Kuriyama, 1968a). It is therefore practical to 
describe the direction of the momentum in the final 
state by the deviations, supposedly being of a small 
amount, from the two directions in the following way: 

k~ = k t + ~  ° for the transmitted direction (2.1) 

and 
k; = k s +  H t + ~  H 

for the Bragg diffracted direction. (2.2) 

The scattering amplitude for an X-ray beam of finite 
size coming into a crystal is now given by the S-matrix 
for a photon in the wave packet [k,v,R; in>  to make 
a transition to the state Ik', v', R';  out >,  the crystal re- 
maining in its ground state (Ashkin & Kuriyama, 1966; 
Kuriyama, 1967a). The scattering amplitude for an 
incident beam of a given shape has been calculated in 
a previous paper (Kuriyama, 1968b). To reproduce 
that result we introduce the following functions: 

T(k ' , k )  = cos ~0 cos ~0K 1 f i (k -k ' )  
(2n) z 2k 

(elastic scattering condition) (2.3) 

Q(k,; i ) =  [a,(kt)+ Kz+k',~t)lF(~)(kt; i) (2.4) 

GiI(K0;{K) = v({ x) [Fro(k; ;j)F(2o)Oxt;i) 

+ r~ o) fv" ;j)V(~)Oxt ; i) ] (2.5) 
K - - H V ~ t  

H)Fri_H(kt ,J)Fo (ks, i)  (2.6) G,j(K+ ;{x) =v({K+ O) '." ( 2 )  • 

G , j ( K -  ; {X)=v( {X-H)F(~) ( k~ ; j )F~) (k t ; i ) ,  (2.7) 

where F~)(k~ ;j) and F~)(kt; i) are called the dynamical 
f ieMfunct ions  in the final and the initial state, respec- 
tively, and c~ is the solution to the dispersion equation 
with the fixed kt for the initial state and the explicit 
forms of those quantities are given in the Appendix. 
The dynamical field function F~)O~t; i) gives the electric 
field intensity of radiation outside the crystal in the 
dynamical theory. The quantities v({ x) and V({K+ H) 
are derived from a double Fourier transform y(kl, k2; co) 
of the polarizability of 'atomic' electrons in the unit 
cell (Kuriyama, 1967a) by the relation 

V(kl- k2) "~ ~(kl, k2 ;co). (2-8) 

In (2.5)-(2.7) we have also introduced a vector {x 
whose t-components are given by equations (2.1) and 
(2.2). Its z-component is defined by the solutions of 

the dispersion equation for the final state (see the Ap- 
pendix)" 

K__ K ' z - fl ,(kt ) - Kz - o~(kt) . (2"9) 

For simplicity we also use the notation 
K ' pj=p i % ) - g z .  (2-10) 

The quantity flj is given in the Appendix, not as a 
function of ~t, but for practical reasons as a function 
of the quantity r/x, which describes the deviation of 
the observation direction, k~, from the Bragg condition. 
The scattering amplitude for a finite X-ray beam in- 
cident on an imperfect crystal can now be written 
(Kuriyama, 1968b), with v and v' disregarded, 

(k',  R';  outlk, R; in> = (k',  R'ISIk, R> = T(k ' , k )  (ab/ 

x cos (oK) 1601',R;i)QOxt;i) x exp [iL{o~(kt) 

+ K z -  k'~(kt) }1 + iT(U,  k) Z [Ag(~K; ~/)Gij(K0; ~ K) 
o 

+ ag(g K + H; ~)G,j(K + ;U)+ a g ( U -  H; #)G,j 

x ( K -  ;~X)]xexp[ iL{ f l j+Kz-k '~(k~)}] ,  (2.11) 

where k~ = kt + Kt + ~K with K = 0 and H. The function 
a(R' ,R;i)  is the Kronecker delta, being unity when R~ 
on the exit surface satisfies the relation 

R t Rt  
= - L(VtO~OK , . (2-12) 

cos ~0K cos ~p 

Here (Vta0xt gives the direction of the classical energy 
flow of the X-ray internal field at the tie point deter- 
mined by ks in the initial state. Sometimes we use the 
vector n(a0 defined by 

n@) = -(Vto~¢)Kt . (2"13) 

In a similar fashion, we can define the direction of the 
classical energy flow for the field in the final state k~ by 

n(flj) = - (Vtfl~)x; • (2"14) 

The presence of the Kronecker delta in the first term 
in equation (2.11) implies that the emerging position 
R' for the X-ray beam, whose scattering process is 
given by the first term, is exactly the same as expected 
in the perfect crystal; the X-ray beams scattered in the 
transmitted and the diffracted directions (referred to 
the perfect reference crystal) emerge from the exit sur- 
face at a position which is identical to the one pre- 
dicted by considerations of the classical energy flow. 

The presence of the Ag factors in the second term 
results from the atomic displacements from the ideally 
periodic lattice sites; it allows the scattered X-ray beam 
to emerge from the exit surface at different locations 
depending on the angular spread of the scattered di- 
rection around the transmitted and Bragg diffracted 
directions. According to the results in a previous paper 
(Kuriyama, 1968b), the effect of the Ag factors on 
scattering is produced by the displaced atoms in a 
limited portion of the crystal, when an incident X-ray 
beam is finite in its lateral dimensions. The geometrical 
construction for the limited portion has been discussed 
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in detail in the previous paper; it depends on the size 
of the incident beam, the direction of the energy flow, 
n(c0, in the initial state, the location of the observation 
point, R', and the energy flow direction, n(fl), in the 
final state. This situation is depicted in Fig.2. All of 
the atoms in the shaded portion in Fig. 2 should be 
taken into consideration for evaluating the Ag factors. 
We call this portion the diffracting domain of atoms. 
This domain defines an atom set ~/'. 

The mathematical expression for the Ag factor is 
given in the following. The geometrical structure fac- 
tor g({) for the crystal may be defined by 

g({)= Ve S exp [ - i { .  R,] (2.15) 
l 

where Vc is the unit-cell volume in the perfect reference 
crystal and RI the actual atomic position displaced by 
u ! from the ideal lattice site 1. The Ag factor is the dif- 
ference of the structure factors between the actual 
crystal and the perfect reference crystal with the sum- 
mation extending only over the atoms in the diffracting 
domain: 

Ag(¢;~/') = Vc Z"{exp [ - i ~ .  R , ] - exp  [ - i ~ .  1]}. (2.16) 

It is easily seen from this equation that if the incident 
beam strikes a crystal portion which is perfect, and the 
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observation point is also limited within this portion, 
Ag vanishes to give the scattering amplitude which is 
identical to that for a perfect crystal. If the beam 
traverses an imperfect portion, the scattering ampli- 
tude differs from that of a perfect crystal. 

It is therefore an important feature of equation (2.11) 
that the Ag factors only convey local information about 
the crystal. The scattering amplitude depends on the 
magnitude of the local departure from perfection. 

3. Structure factors for isolated imperfections 

(a) A model crystal 
The crystal of interest contains imperfections in such 

a way that each imperfection is well localized and 
isolated from others. The imperfection can be any 
type, such as a local coagulation of dislocations, a 
dislocation loop, an internal precipitate, a void, or a 
local inhomogeneous solid solution. This model cer- 
tainly includes a crystal with a single dislocation, iso- 
lated impurities or vacancies. However, a continuously 
interlocked long-range imperfection, such as a regular 
dislocation array or a small angle grain boundary, is 
presently excluded. 

In our model, the displacement of any atom from 
its ideal lattice site 1 is caused by just one of the im- 

"t 
b 

t 
z=O - zl % ~':'..??: 

% %:.:::::" \ 

z - L  

%& 
&% 

:% % 

/ R' ! N~ R'+(b'/cos qb K) 
- '%  ̀ ""  

Fig.2. Geometrical construction for the diffracting domain of atoms participating in scattering; n(~) and n(/~) are the directions 
of the classical energy flows in the initial and the final state, respectively. The shaded area is called the diffracting domain for 
the photon states of interest, which gives an atom set Y/'. 
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perfections (the condition of isolation). If the location 
and the designation of the imperfection are specified 
by a and d, respectively, then the atomic displacement 
at the lattice site I can be given by 

Ul = X u~a=u a for legit(d) (3.1) 
d 

as long as the 1 belongs to the region in which the 
atomic displacement at a lattice site is caused by the 
same imperfection located at a. This region may be 
called the effective domain of the imperfection d, and 
is given by an atom set ~//'(d). The location a can be 
specified by any lattice vector within ~/'(d), but, for 
convenience, is assumed to be the center of ~'(d). 
Obviously, u a vanishes unless l~$/'(d). A geometrical 
arrangement is illustrated in Fig. 3. 

Since equation (2.16) implies that the atom contribut- 
ing to the Ag factors in question must belong to ~/, 
it is convenient to introduce another region given by 
the atom set v(d), where ~(d) is the product (or inter- 
section) of the two sets ~/'(d). ~/'. Then the Ag factors 
are given by 

Ag(~;$/')= Vc X X ( exp [ - i ~ .  Ri] 
d Icy(d) 

- exp [ - i ~ .  1]} (3.2) 

where d indicates the sum over the imperfection centers 
for which ~,(d) is not empty. Equation (3.2) states that 
the scattering amplitude is given by the sum of the 
scattering amplitudes due to single imperfections. 

(b) The normal coordinate expansion 
In the normal coordinate expansion (Matsubara, 

1952; Kanzaki, 1957; Yamosa & Nagamiya, 1957; 
Krivoglaz & Tikhonova, 1960; Krivoglaz, 1958, 
1959a, b, 1960), the atomic displacement vector can be 
written 

ula= X A(q,d) exp [iq(1- a)], (3.3) 
q 

where q is restricted to the first Brillouin zone (the 
unit cell of the reciprocal lattice). The Fourier trans- 
form of the displacement vector has the property that 
A(0 ;d)=0  and A*(q,d)=A(-q,d). 

If the exponential function in (3.2) is expanded in 
a power series of ~. u I and equation (3.3) is substituted 
in the series, the 3g factor is given by 

o o  

Ag(~K+K';~/')= Xexp[--i~K.a]X ( -i)n 
d n = l  n !  

× ~ ' . . .  Z [ (~K+K' ) .  A(ql,d)] . . .  [(~K 
ql qn 

+ K') .  A(qn, d)]A[~ K- S qe;v(d)], (3"4) 
i 

where ~ = ~K _ ~7 qi and 
i 

A[g;v(d)]= Vc X exp [ - i ; .  1], (3.5) 
lev(d) 

and l is measured from the center a; ~K is defined by 

(2-1), (2"2), (2"9) and (2.10), and is a vector restricted 
to the first Brillouin zone; K takes on the value of 0 
and H, and K' of 0 and +H.  Equation (3.5) is the 
factor, as in the kinematical theory, that determines 
the effective size of the scatterer. Unlike the size effect 
in the kinematical theory, the X-ray absorption effect 
should be taken into account correctly for the present 
purpose. The 'mean free path' of X-rays in a single 
crystal may have different lengths depending on the 
scattered direction (and on the direction of polariza- 
tion). 

(c) The role of absorption on the size effect 
To evaluate equation (3.5) we introduce an approx- 

imation in which the atom set v(d) contains Nx, Nu 
and Nz atoms in the x, y, and z directions, respectively. 
The projected lattice constants for the perfect reference 
crystal are denoted by ez, eu and ez. The unit-cell 
volume Vc is equal to [ezeuez]. Then equation (3.5) re- 
duces to 

A[~;v(d)]= Vci_Rx.y,zSin ( N ~  ~iei)/sin (1-~ieO. 

(3.6) 

When a crystal is in the shape of a plate as in the 
present problem, the x and y components of the vector 
~K are given by real numbers, because kt, k~ and Ht 
are real. Therefore, equation (3.6) gives the size func- 
tion for the x and y directions: since Nx and Nu are 
large, the size function behaves like the delta function. 

If the effective size v(d) of the dth imperfection is 
small in its lateral direction compared to the lateral 
size of the diffracting domain, ,/r, (the beam size), 
equation (3.6) gives the imperfection range in diffrac- 
tion. If the beam size is narrower than the size of the 
imperfection range, equation (3.6) gives the beam size 
effect itself. 

As for the function of (z in equation (3.6) some 
complications in evaluating it must be expected be- 

/ 
Fig.3. Schematic illustration of the distribution of effective 

domains of imperfections. The vector di specifies the center 
position of the imperfection di. The loops enclose the effec- 
tive domains of the imperfections which contain an atom 
set ~(d). The shaded area represents the product of the two 
atom sets ~ ' .  ~(d)= v(d). 
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cause of absorption of X-rays. The z-component, ~f 
becomes complex, because the solutions of the disper- 
sion equations for the relevant states, c~ and fls, are 
complex. The imaginary parts of ei and flj are the ef- 
fective (linear) absorption coefficients in the photon 
state of interest. The e~ and flj can be considered to 
be functions of kt and k'/, respectively. When kt or kt 
deviates considerably from the value for the Bragg 
condition, the imaginary part of c~i(kt) or flj(k;) ap- 
proaches half the value of the ordinary linear absorp- 
tion coefficient,/z. When kt or k; satisfies the Bragg 
condition, the value of the imaginary part becomes 
either zero or/z depending on the mode of the dressed- 
photon (or quasi-photon) in the crystal (the mode of 
the dynamical fields), which is specified by i or j. We 
assign i or j =  1 to the weak absorption mode, which 
frequently is called the anomalous transmission mode. 
The other mode ( i , j= 2) may be called the strong ab- 
sorption mode. Fig. 4 shows the value of the imaginary 
parts of 0c¢ and flj as a function of the dimensionless 
variable describing the deviation from the Bragg angle 
for a symmetrical reflection. When the value of the 
imaginary parts differs considerably from the ordinary 
absorption coefficient, we say that the photon state is 
in the dynamical diffraction range. 

Since the q for the displacement vector is real, the 
imaginary part of ~z is given by the imaginary part of 
~f  alone, regardless of the value of qz. When Im(~f) 
is zero, the z part of equation (3.6) becomes the ordi- 
nary size function. This occurs when either (1) the final 
states exactly satisfy the condition that k; = kt + Kt and 
in addition, the mode for the final state is the same 
as that for the initial state: i=j ,  or (2) both the initial 

and the final states are outside the range of the dynam- 
ical diffraction effect. 

For other states, the imaginary part of ~ has a non- 
zero value, either positive or negative. It is not so easy 
to evaluate the z part of equation (3.6) when ~z becomes 
complex. At first glance, it looks as though the func- 
tion diverges when Im(fff) is positive. However, there 
is no divergence in the scattering amplitude. To prove 
this, it is better to consider the Ag factor given by (3.4) 
together with the factor exp [ifljL] as it appears in the 
scattering amplitude (2.11). In equation (3.4), we have 
the summation over d. Therefore, the function which 
we shall study is given by 

22 exp [ - i ~  K . a]A[~ K -  X qi;v(d)] exp [ - lm(f l j )L] .  
d i 

(3.7) 
This function is written 

Vc S exp [--i{Re(~K). l + q .  d}] exp [ -  Im(fl~) 
l 

x ( L -  lz)] exp [ -  ]m(c~ 0 . lz], (3-8) 

where 1 is now measured from the entrance surface of 
the crystal. Since Im(flj) and Im(e 0 are always positive 
(Ashkin & Kuriyama, 1966; Kuriyama, 1967a) and 
L - l z  and lz are also positive, this function certainly 
converges. This is an expected consequence in the 
quantum mechanical formulation of any scattering 
theory where absorption can never be zero. 

Equation (3-8) also implies that the dressed photon 
relating to the initial state travels inside the crystal 
with the absorption coefficient Im@) until it reaches 
the Ith atom, and thereby is excited (or scattered) to 
be another dressed photon travelling with the absorp- 

Im(a~) or Im(,8 i) 

/x/2 

I0 5 0 5 I0 
= ~ o r ~  K 

Fig.4. The effective absorption coefficient Im(c~d or Im(flj), for different modes. The mode with i or j= 1 has a weak absorption 
coefficient. This is the mode for anomalous transmission"/1 is the ordinary linear absorption coefficient. The quantity-g for 
the initial state or "0-K for the final state is a dimensionless variable indicating a deviation from the exact Bragg condition. 
g-or -0-n=[Re v(H)v(-H)] -1/2 × (e or r/x in text). The arrow with (q) represents an example of a transition from the initial 
state i to the final state j with the momentum change, q, due to the atomic displacements. 
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tion coefficient Im(flj) all the rest of the way to the 
exit surface (here only the collision process of the first 
order is considered). The dressed photon cannot travel 
a longer distance than [Im(ct0] -1 or [Im(flj)] -1 without 
appreciable absorption. If the imperfection center d is 
located further than [Im(ct0]-I from the entrance sur- 
face and further than [Im(flj)]-~ to the exit surface, 
then the atoms inside the effective domain of this im- 
perfection v(d), do not appreciably participate in the 
scattering process. Only the imperfection centers lo- 
cated favorably can scatter X-rays out of the crystal. 
Evaluating the z-part of equation (3.6) therefore be- 
comes complicated, depending on the value of the 
Im(c¢0, Im(fl~), a and Nz. 

In order to avoid this complication we introduce the 
following drastic simplification: 

Im(o~Olz= Im(a 0 (lz-dz) + Im(o~l)dz '~ Im(~)dz ] 

Im(flj) (L-lz)=Im(flj) (L-dz) l (3.9) 
- Im(~j) (lz- dz) ~_ Im(fl~) ( L -  dz) 

where lz belongs to the atom set v(d). This is a good 
approximation if Nzed2 is smaller than [Im(c~,)] -1 and 
[Im(/~)]-a. In this approximation equation (3.4) can be 
written 

Ag({K+ K' ;~/') = X (v(d)) exp [_i~K . t~] 
d 

x[(-- i )  (~K+K'). B(~K)--{M(~K+K')], (3"10) 

where 

B(~K)= XA(q,d) (v(d)>-lA[Re(~K-q);v(d)], (3.11) 
q 

M(~ K + K')= X S [(~K + K').  A(p, d)] [(~x 
p q 

+ K').  A(q,d)] × (v(d))-~A[Re(~ K 

-q);v(d)] ,  (3.12) 

and (v(d)) is the volume of the atom set v(d). We 
have ignored the products of more than two A(q, d)'s. 

4. Approximate expression for the scattering amplitude 

The value of the real part of ~K is much smaller than 
H if the incident beam satisfies the Bragg condition 
very closely. The initial state of the photon given by 
the incident beam in that case certainly lies in the dy- 
namical diffraction range. If we are interested in the 
scattered beams propagating in a direction almost 
parallel to either the transmitted or the Bragg dif- 
fracted direction, the final state of interest also lies in 
the dynamical diffraction range, for which the real 
part of {K is negligibly small compared with H. There- 
fore, in equation (2.11) the terms proportional to 
and the term M({ K) can be neglected in comparison 
with the terms proportional to H and M({K+H), re- 
spectively. 

If the scattered beam propagates in a direction dif- 
ferent from the above directions, the final state given 

by this scattered beam lies outside the dynamical dif- 
fraction range, having a larger {K which may not be 
neglected, compared to H. However, as is known from 
X-ray kinematical diffuse scattering experiments on 
imperfect single crystals, the diffuse scattering intensity 
is usually concentrated around a reciprocal lattice 
point. This knowledge suggests that it is reasonable to 
assume again that for most crystals Re(O,~H. (Cer- 
tain types of solid solution effects with super lattice 
formation may not justify this assumption). 

The second term of the scattering amplitude (2-11) 
in the present approximation can be written 

2: S (v(d))exp [_i{K. a] {(-- i)HB({K)GIj(+) 
i i 

-½M(H)Gt i ( - )} .  (4-1) 

We can easily calculate 

where 

o , j (+)  = C~j(K + ;~K) + C~j(K- ;~K) 

= v(-HJKo + HJKH)f~(K;i,j) 
x F~2__)x(kt;i ) 0-2) 

f±(O; i,j) = (flj + k D [ £2(o~ + Hz) +_. I2(flj 
+ Hz)]z-l(/b) (4.3) 

f+(K;i,j)=(Zj+ Hz+ k;) [~(p~) 
+ ~@)]~-I(Zj) (4"4) 

are effectively the extinction terms. The quantities used 
in (4-3) and (4.4) are defined in the Appendix. 

It is interesting to note that equation (4-2) reduces 
to a simpler form, when flj is equal to c~i. This is the 
case when the initial and filial states are connected by 
the same mode, and the latter is scattered in the exact 
transmitted and Bragg diffracted directions Of;= 
kt+Kt): 

Gi~(+)l~K=0=2v(_ H) o:~+Kz+k', 
c~i+k~ 

x FaH)(kt;i)F(2K)(kt;i ) (4.5) 

G~i(-)l jc=0=0. (4"6) 
In this case, also 

X (v(d))=L(ab/cos ~0~J(R',R;i) (4.7) 
d 

because R' must satisfy the relation of equation (2-12) 
to give a non-vanishing unperturbed scattering ampli- 
tude. 

In equations (4-3) and (4.4) it is useful to realize 
that f+(K; i, i) is almost unity and F_(K; i, i) is nearly 
zero when j =  i, while f+(K; i,j) for j #  i is nearly zero 
and !f-(K;i,j)[ is roughly 1, as long as ~K is small. 
From these properties of f±(K;i,j) we derive the ap- 
proximate expression for the scattering amplitude. 

We can now write 

(k'R'ISIkR) = S< 1) + St z) + S(s) + S (4) . (4.8) 

The first term is the dynamical diffraction term (Kuri- 
yama, 1967b) and is given by 
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S(') = T(k ' ,k)  (ab/cos ~OK)(~k, t,ktWH t 
X Z" J(R',R;i)[1 - iU(H) .  L] 

i 

x (o~+ Kz+ k',)F(~)(kt;i) 

x exp [iL(~ + Kz-k'~)], (4"9) 

where 

U(H)=(oq+k'~)- lM(H)v(-H)F~)(kt; i )  . (4.10) 

If U(H) is zero as expected in a perfect crystal, equa- 
tion (4.9) becomes identical with the result obtained 
in the dynamical theory. 

The second term S(2) implies that there is an addi- 
tional effect due to the imperfections on the dynamical 
term. This second term is, in its interaction process, 
equivalent to the third term, which arises from kinemat- 
ical scattering of the dynamically diffracted X-rays and 
is due to the imperfections. The third term is given 
first as follows: 

S (3)= T(k' ,k)  Z W(H)Fn(~(k t ; i )  

xexp  [i{Re(flj)+Kz-k' ,}] , (4.11) 
where 

W ( H ) =  Z @(d))HB(q)v(-HJKo + HOKH ) 
d 

x f - (K; i , j )  x exp [ - i q .  d] 

x exp [-Im(flj)  (L-de)] exp [ -  Im(c~0dz] 

(4.12) 

with qt = k~ - k t -  Kt and qz = Re(flj-  ~0. The S (3) term 
results from the transition of the dressed photon in the 
initial mode i to the differing mode j ( j¢:  i). This tran- 
sition is accompanied by the phase shift, Re(/?j-cq), 
and the relevant change in the effective absorption 
coefficient. It should be noted that this term S(3) is not 
proportional to F~)(kt;i) (as is the dynamical term 
S(1)), but to the dynamical field function Fn(~)s(kt;i). 
Since the third term gives non-vanishing scattering 
amplitudes in directions other than in the transmitted 
and the Bragg diffracted directions, this S(3) term es- 
sentially gives the 'diffuse' scattering effect around the 
Laue spots. This remark applies equally to scattering 
around the 'zero' Laue spot, that is produced by the 
angularly undeviated beam. The total intensity from 
this 'diffuse' scattering (S(3)) can easily exceed the in- 
tensity due to the dynamical term, and depends strong- 
ly on the crystal thickness and the locations of the im- 
perfections. The second term S lz) is a special case of 
S(3) and is given by 

S(z)=S(3)(kz=kt+Kt;flj=o~) . (4"13) 

It corresponds to diffuse scattering angularly coincident 
with the intensity arising from term St I) and cannot 
be independently observed. 

The fourth term is the correction to the third in the 
present approximation. This term S(4) results from the 
interaction, in which two different Fourier transforms 
of the atomic displacement vector, A(q, d) and A(q', d) 

are involved. A process involving q and - q  can be 
treated more rigorously. Kuriyama & Miyakawa (1969) 
have used the corrected Bragg diffracted propagators 
for X-ray diffraction from a piezoelectrically vibrating 
crystal to include the process involving q and - q .  Ac- 
cording to their results, the dynamical field functions 
F~)(kt;i) should be corrected by the exact narrowing 
of the dynamical rocking curve width (the extinction 
distance). In the present approximation, the fourth 
term appears mainly because we have not corrected 
the dynamical field functions as initially employed in 
S(t), S(z) and S (3). 

Finally, we consider the final state k; when it is far 
outside the dynamical diffraction region. Then, { can- 
not be ignored as compared to H. For such k;, we can 
easily prove that F~)(k~,j)_ 0, and that F~)(k~ ;j) ap- 
proaches either zero or 1, depending upon which way 
k; deviates from the Bragg condition. Therefore, from 
equations (2.6) and (2.7), the scattering amplitude close 
to the Bragg diffracted direction becomes proportional 
to (~+H)B(~)F~)(kt;i),  exactly as expected from the 
kinematical diffuse scattering theory. 

Results and discussion 

(a) Isolated imperfections 
In a linear theory of lattice imperfections, the atomic 

displacement is given by a superposition of the dis- 
placements due to individual imperfections. Since a 
casual study of X-ray diffraction shows that the scat- 
tering amplitude is a complicated function of the atomic 
displacements, one cannot generally say that the scat- 
tering amplitude is given by a superposition of the 
scattering amplitudes from the crystal having single 
imperfections. It is, however, self-evident and observed 
from topographic images by X-ray diffraction that only 
the imperfections under a certain region irradiated by 
an incident X-ray beam can be revealed in these images 
as though they were independent of other imperfec- 
tions which were not irradiated by the incident beam. 

In a previous study (Kuriyama, 1968b) and the 
present paper, it has, in fact, been shown that the 
scattering amplitude is expressed by the local behavior 
of the imperfections under the incident beam. Further- 
more, it has now been shown that this scattering am- 
plitude can be described by a superposition of the 
effects due to single imperfections as long as the im- 
perfections are isolated mutually though irradiated 
simultaneously. 

(b) The expansion approximation used in evaluating Ag 
In evaluating the Ag factors, we have used a Taylor 

expansion in a power series of ~. u .  As the conver- 
gence of this series is usually poor, this approximation 
certainly is not good. If the exact coordinates of the 
displaced atoms could be given, the numerical calcula- 
tion of the Ag factors would be performed. However, 
this is not practical at present. Instead, one should 
introduce models of general types of imperfections. 
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The quantitative scattering data are then tested against 
the quality of agreement with the calculated intensity 
using the model. The quantitative atomic displacement 
parameters can be obtained from the models. Finally 
these parameters can be compared to other informa- 
tion and theories of crystal imperfection. The present 
paper only aims at an understanding of basic processes 
of diffraction, especially those processes in which dy- 
namical diffraction is dominant. 

As we have seen theoretically, the atomic displace- 
ments appear in the scattering amplitude as a kind of 
geometrical factor, while the diffraction processes are 
involved in the dynamical field functions, F~)(k~ ;j) and 
F~)(kt; i). In other words, G~:(K + ; {K) and Gi~(K- ; {~) 
functions in (2-11) contain the complete processes of 
the dynamical interaction, and the Ag factors are co- 
efficients determining the weight of each dynamical 
process. In this sense, the present expansion approx- 
imation does not change the description of the dy- 
namical interaction. We may therefore say that this 
treatment is a convenient approximation to study the 
basic processes of diffraction. 

The present expansion approximation becomes a 
good one when (a) the magnitudes of the atomic dis- 
placements are very small (strain of less than one per 
cent) and/or (b) the imperfection covers a long range 
but is characterized by a slow rate of change of strain 
with distance, although the magnitude of the strain 
may exceed one per cent. The latter condition can be 
generalized a little further, specifically to include solid 
solution inhomogeneities in which the imperfection 
consists in a change of scattering power in a specific 
cell in addition to an atomic displacement. The ex- 
pansion approximation is good whenever the Fourier 
transform A(q,d) of the atomic displacements ap- 
proaches zero quickly as q increases. Fortunately, 
these two cases represent most situations studied in 
current X-ray experiments and theories. 

(c) The dynamical diffraction term S(1) 
The S(~) term becomes identical to the result obtained 

from the dynamical theory when all atoms rest at per- 
fect crystal sites. The change in the dynamical dif- 
fraction due to the crystal imperfections is described 
by S (1), and the term itself is caused purely by the dy- 
namical interactions in the imperfect crystal. 

The decrease in the Borrmann (anomalous) trans- 
mission is therefore contained in this term. A white 
(lower intensity) image or shadow of a defect appears 
on a black, anomalously transmitted background, when 
the X-rays encounter a defect region. The disruption 
of the Borrmann transmitted beam is caused by a 
change in the effective absorption coefficient due to 
the local distortions. 

The S(1) term also explains the narrowing of the 
dynamical diffraction range resulting from the imper- 
fections. If one could make a measurement of the 
rocking curve width (or extinction distance) for the 
S (x) term alone, the width would be smaller than that 

for a perfect crystal. This conclusion implies that it is 
difficult for a crystal to maintain the dynamical dif- 
fraction effect as the imperfections increase. 

We can demonstrate the disruption of the Borrmann 
effect and the narrowing of the dynamical diffraction 
range explicitly for a symmetrical reflection condition 
in the Laue geometry. As in a previous paper (Kuri- 
yama, 1967b) we write the factor 1 - i U ( H ) .  L in equa- 
tion (4.9) as exp [ - iU(H)L]  and combine it with the 
other factor exp [ie~L]. Then the dynamical diffraction 
term can be written 

S(1)=[Dyn. Amp.] exp [i{~i- U(H)}. L], (5.1) 

where [Dyn. Amp.] is the dynamical amplitude of the 
transmitted or Bragg diffracted X-ray beam obtained 
in the dynamical theory for a perfect crystal. For a 
symmetrical reflection, one obtains 

1 Re{v(O)} 1 1 
c~ - U(H) __- k cos OB + + 

2 kCOS0B 2 kcOSOB 

x [e+ ]/e2+-{1-M(I~)} Re{v(H)v(-H-)}] 

+ i  1 Im{v(0)} [1 + 1 {1-M(H)}  
2 k cos OB ,. -- 2 I/eZ+Re(v(H)v(-H~} 

Im{v(H)v( _-_H)}] 
× , ( 5 . 2 )  

Im{v(0)} ] 

where OB is the Bragg angle, Im{v(O)}/k is the ordinary 
linear absorption coefficient p, and 2~ = kt z -  (kt + Ht) z. 
The real part of ~ i - U ( H )  is the phase shift due to 
the dynamical diffraction effect and involves the factor 
[1 - M(H)] in the square root term. The imaginary part 
also contains the term [1 -M(H)] ,  which indicates the 
change in the effective absorption coefficient. 

Furthermore, if we approximate 1 - M ( H )  by 
exp [ -M(H)] ,  equation (5.2) suggests that the factor 
v(H)v(-H) is, in effect, modified by exp [ - M ( H ) ] ,  
being similar in form to the thermal Debye-Waller 
correction. The real part indicates that the rocking 
curve width for S(1) is now v(H)v(-H)exp [ -M(H)] ,  
implying the narrowing of the dynamical diffraction 
range (Kikuta & Kohra, 1966). The imaginary part in- 
dicates that the change in the effective absorption coef- 
ficient is caused by the factor Im{v(H)} exp [ -M(H)] ,  
instead of Im{v(H)} in the perfect crystal. These effects 
have been explained by Dederichs (1967) and Kuriyama 
(1967b) when defects are statistically distributed 
throughout the crystal. This term also contains the 
Pendell6sung effect in an imperfect crystal. 

(d) The second term S(2) 
The second term, like the third term, is the effect 

of kinematical scattering of the dynamically diffracted 
X-rays due to the imperfections. This effect weakens 
the contrast of white images produced by the S (1) term 
as the crystal distortion increases, because the X-ray 
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intensity due to the S (2) term increases in proportion 
to the effective volume of the imperfection domains 
and the Fourier transforms of the atomic displacement 
vectors. The S (2) term is, to some extent, responsible 
for the non-uniform background in the anomalous 
transmission (diffraction) beams, and has the effect of 
partial occultation of the S(1) amplitude. 

(e) The effect of  the third term S(3) 
This term plays essentially the same role as the S(2) 

term. However, the complicated images in topographs 
may be caused mainly by this term, because the X-rays 
scattered by the imperfections emerge from the crystal 
exit surface with a certain spatial divergence. This spa- 
tial (angular) divergence arises naturally from the above 
treatment even though no such divergence is postulated 
for the incoming beam. A geometric interpretation is 
given in Fig. 5. 

The crystal is irradiated by a beam thought of as 
sweeping across the surface in the plane of the Figure 
while maintaining the Bragg angle 08 for a plane whose 

reciprocal lattice vector is chosen parallel to t. For 
beam position 1 striking a defect, X-rays can emerge 
at any position R' between the limits indicated on the 
Figure (Kuriyama, 1968b). The contribution of this 
beam 1 to the S(1) curve takes into account the Borr- 
mann disruption of the defect. The dotted curve in 
Fig. 5(a) illustrates that contribution as compared with 
any other beam position (beam 2 in Fig. 5) that fails 
to strike a defect. Fig. 5(b) illustrates the contribution 
of the IS(Z)+S(3)l 2 term. Beam 2 does not contribute 
any intensity, but beam 1 does. Apart  from the geo- 
metrical factor due to the atomic displacements, this 
intensity distribution as a function of R' is essentially 
given by If-(K'" " (2) " 2 ,1,J)Fn_r~(kt, t)[ • Fig. 5(c) combines all 
the observable intensities from the swept-beam ex- 
periment. In this case we have considered a single 
isolated defect. In addition, in a practical experiment 
the incoming beam would have a finite dimension 
perpendicular to the plane of Fig. 5. Whereas the con- 
tributions to the S(1) term would show no angular 
spread, the defect scatter of Fig.5(b) would have a 

Beam I Beam 2 

Z~ ~ Crystal t~f )~-qJ(d) 

, ,J  a~n..~'l p'/ '-,/I 
a) lSC"l ~ i1~ !~/~°~l 

I ., , . .  I 
I 

b) ISC~+S{'~I2 ~ 

I 

c) Superposition / ~  

R~in" ' , RB Rmax. 

,'L_Anomalous 
, ,Transmission 
I ! 

of the 
Borrmann Beam 

Anomalous Transmission 
Background / 

Fig.5. Explanat ion of  black-white contrast  image in topographs  for symmetrical  Laue geometry.  Beam 1 is the beam por t ion  
striking an imperfect por t ion of  the crystal, whereas Beam 2 strikes a perfect port ion.  Solid curve in (a) represents the anoma-  
lous transmission (diffraction) intensity as the function of the posit ion of the incident beam. Curve (b) represents the scattering 
due to the imperfect domain  v(d) in the Bragg diffracted beam. The resultant curve is given by the curve (c). R'mln and R'max 
determine the range over which X-rays scattered by the defect may emerge f rom the crystal. 

A C 25A - 4 
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small angular spread out of the plane of the Figure. 
In some accurate experiments on a highly inhomogene- 
ous crystal it might be necessary to take such diver- 
gence into account. However, most of the black-white 
contrast images could be explained semi-quantitatively 
by this kind of intensity distribution shown in Fig. 5(c). 

As we mentioned in § 4, whereas the first term is pro- 
portional to/ :~)(kt ; i ) ,  the S (2) and S (3) terms are pro- 
portional to the dynamical field function f~)_~(kt;i). 
This implies that the X-rays are scattered in a direction 
nearly parallel to the Bragg diffracted direction with 
the amplitude proportional to the dynamical field func- 
tion/:(o2)(kt;i) which is related to the dynamical scat- 
tering in the transmitted direction, and vice versa. The 
function T~)(kt;i) is well localized within the dynam- 
ical diffraction region, while F(02)(kt;i) tends to ap- 
proach a free photon behavior. The effect of the defect 
on diffraction therefore is more prominent in the Bragg 
diffracted direction than in the transmitted direction. 

(f)  The thickness of the crystal and the depth of imper- 
fection centers 

Next we consider the effect of the crystal thickness 
on the images and their contrast. For a thin crystal 
(/~L < 1) the S(1) term does not give a prominent anom- 
alous transmission effect, but shows almost the same 
effect as in the kinematical scattering, because both 
modes ( i= 1 and 2) are equally effective. However, 
there is a possibility of seeing a faint anomalous trans- 
mission effect in an exceptionally perfect region of the 
crystal image. The other terms give the kinematical 
diffuse scattering or line broadening, because the 
dressed photon of the initial mode e~ can reach all the 
imperfections under the incident beam and is thereby 
scattered into the final mode flj, which can travel 
through the crystal without appreciable absorption: 
L -  dz ~ [Im(fl~)] -1 and dz ~ [Im(~0]-i in equation (4.12). 
Therefore, we would expect to see black images of 
larger size than the incident beam around defects, and 
probably a faint undiffused anomalous transmission 
trace of the size of the beam from the perfect portion 
of the crystal. 

For a crystal of intermediate thickness, the S(1) term 
shows an anomalous transmission effect through a 
perfect portion of the crystal and white images at the 
site of imperfections because of the effect described in 
(c). The other terms give black images and the black- 
white contrast images described in (d). Generally the 
images are expected to be complicated because the 
depth of the imperfections affects the resultant inten- 
sity distribution [see equation (4-12)]. Image contrast 
becomes better in this range of thickness. 

For a thick crystal (/~L> 10), the S(1) term gives 
white images of defects with good contrast on the 
background due to the otherwise anomalously trans- 
mitted (or diffracted) beam. The other terms (S(2) + S(3)) 
show little effect on the background, except for the 
imperfections located near the exit crystal surface. 
This result may account for the often surprising con- 

trast from surface imperfections such as scratch marks. 

(g) The limiting case of a highly imperfect crystal 
When the crystal is highly imperfect, the scattering 

amplitude is dominated by the St 2) and S (3) terms. 
However, the amplitude does not exceed the value ex- 
pected from the kinematical theory, because the Ag 
factors never exceed the crystal volume or the volume 
of the diffracting domain. 

(h) Additional comments 
When the diffracting domain is constructed at an 

observation point R', one must take into account two 
tie points for different modes, which are called con- 
jugate points. Detailed discussions on this subject have 
been made in a previous paper (Kuriyama, 1968b). 

For topography in high resolution, the size of the 
incident beam should be considered more carefully. In 
order to obtain topographs of high spatial resolution, 
an incident beam of extremely small size is needed. 
Then the momentum divergence in the incident wave 
packet becomes wider than the range of dynamical 
diffraction. In the zero order approximation, we may 
obtain the correct result by integrating the present 
scattering amplitude over kt. 

The author wishes to thank Mr H.S.Peiser and Dr 
A. W. Ruff for their helpful discussions. 

APPENDIX 
The dynamical field functions 

For a single Bragg reflection, the momentum k of the 
photon in the initial state approximately satisfies the 
Bragg condition Ikl = ]k+HI.  Then, the following func- 
tion of a vector variable p becomes useful: 

det re(p)= ~2(p)f2(p + H ) -  v (H)v( -H)  (A-l) 
where 

f2(p) = p2_ k 2 _ v(0). (.4-2) 

The possible modes, e~, of the dressed photon 
created by the incoming photon and the crystal elec- 
trons are determined by the dispersion equation for 
the initial state (kt given): 

[det m(p)]m=kt.oz=,i=0 for c~. (A-3) 

The dynamical field functions for this state are given by 

F(~ ( k t ; i ) = 0  (,4-4) 

r(o2)(kt;i)=(o~t+kz)f2(o~,+ Hz) [A(0c,)] -1 (A-5) 

F~)(kt ;i) = (~i + kz)v( + H) [A(c~0]-I, (A-6) 

where 

and 

g2(o~i+ Hz)=[g2(p)]p,=k,+x.i,.pz=,i+n z (A-7) 

A(e0= [-3;z det m(p)]p,=k,.pz=,, (A-8) 
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In a similar fashion, the possible modes of the 
dressed photon creating the outgoing photon in the 
final state are determined by the dispersion equations 
for the final state of interest. For a single Bragg re- 
flection the two major propagation directions of the 
outgoing photons are significant in their final states: 
the state having k' almost parallel to k (the transmitted 
direction) and the state having k' almost parallel to 
k +  H (the Bragg diffracted direction). 

For the final state in which k ' ~ k  the modes fl~, 
which is equal to flj in (2.10), are given by the disper- 
sion equation 

[det m(P)]p,=k',o~=B/=O, (A-9) 

and give the dynamical field functions 

where 

and 

F(~(k; ; j ) = ( f l l + k ; ) v ( - t t )  [A(fll)]-' (A-10) 

F(oD(kf ;j)=(fl1+ k'z)g2(flt + Hz) [A(flj)]-' (A-11) 

F_(~ (k~ ;j) = 0 ,  (A-12) 

I2(flj+ Hz)=[£2(p)]p,=k,,+u,.,,=pj+u~ (A-13) 

] A(&)= - ~ z  det m(p) pt=k't,pz=fli (A-14) 

For the final state in which k' is almost equal to 
k ' +  H, it is convenient to use the variables k ' =  k ' - H  
and fl~ [defined in (2.10)] instead of k' and I~. Then, 
flj is determined by 

[det m(p)]p,=v.p,=pj = 0.  (A- 15) 

The dynamical field functions are given by 

where 

F(~ (k; ; j ) = 0  (A-16) 

F(o~)(k; ;j)=(fll  + Hz+ k'~)f2(fll) [A(flt)]-' (A-17) 

F~)(k~ ;j) = (flj + Hz+k'z)V(+ H) 
× [A(flj)] -x , (A-18) 

£2(flj) = [~2(P)]pt=~,=k',- n,.v~=Bj (A-19) 
and 

A(fls)= [-~pz det m(P)lp,=Vt.v~=~i (A-20) 

In evaluating these functions it would be convenient 
to use, instead of kt and k;, the variables indicating 
the deviation from the exact Bragg condition. In par- 
ticular, it is extremely difficult to determine kt and k~ 
with a great degree of accuracy on the absolute scale 
in experiments. However, one can measure the devia- 
tion of the scattering angle for the relevant state on 
a relative scale from the exact Bragg angle 0B. We 
denote the angle deviations for the initial state and for 
the two final states by &p, J~0 o , and J~0ri, respectively. 
The Bragg angle 0B is defined by 

2[QI sin 0B=IH[,  (A-Z1) 
where 

I Q[ 2-- k 2 + v(0). (A-22) 

Then the variables for the deviation are given by 

and 

e = IQI 2 sin 20B. fi~o (A-23) 

r/K= IQ[ 2 sin 20B. Jq~r (A-24) 

with K =  0 and H depending on which final state is of 
interest. In terms of these variables, the quantities 
needed for the initial state are given by 

1 ~ = Qz + 
2(Qz + Hz) 

(A-25) 

Qz 
f2(c~i) = Qz+Hz 

Q; ) v ( -H)v(H)]  (A-26) 

t2(~ + Hz) 

Qz 
. . . . . . . . . . . . . .  

where Qz is the z-component of Q. For the final state, 
flj and O's are obtained by replacing c~ and e by flj 
and r/K, respectively. 

It is obvious from these calculations that the dy- 
namical field functions for the initial state, T~)(kt;i), 
become identical to the electric field intensity of radia- 
tion outside the crystal in the dynamical theory. 
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